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a  b  s  t  r  a  c  t

In several  economic  fields,  such  as  those  related  to  health  or  education,  the individuals’  characteristics
are  measured  by  bounded  variables.  Accordingly,  these  characteristics  may  be  indistinctly  represented
by  achievements  or shortfalls.  A difficulty  arises  when  inequality  needs  to be assessed.  One  may  focus
either  on  achievements  or on shortfalls  but  the  respective  inequality  rankings  may  lead  to contradictory
results.  In  this  note  we  propose  a  procedure  to define  indicators  that  measure  equally  the  achievement  and
shortfall  inequality.  Specifically,  we  derive  measures  which  are  invariant  under  ratio-scale  or  translation
transformations,  and  a  decomposable  measure  is also obtained.  As  the  indicators  proposed  depend  on
the  distribution  bounds,  families  of indices  that  guarantee  the same  inequality  rankings  regardless  of  the
distribution  maximal  levels  are  identified.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

A  number of recent papers have highlighted the difficulties in
measuring inequality of a distribution that can be described either
in terms of achievements or shortfalls (among them Clarke et al.,
2002; Erreygers, 2009c; Lambert and Zheng, 2011). This situation
arises in different economic fields in which bounded variables are
involved, particularly in the measurement of health inequality. As
stressed in the mentioned papers, the choice between achieve-
ment and shortfall inequality measurement is not innocuous, since
different choices may  lead to contradictory results.

Erreygers (2009c) characterizes two indicators, appropriate
normalizations of the absolute Gini index and the coefficient of

� We are indebted to two anonymous referees whose suggestions and comments
that have helped us to substantially improve the paper. This research has been par-
tially supported by the Spanish Ministerio de Educación y Ciencia under project
SEJ2009-11213, cofounded by FEDER and by the Basque Government under the
project GIC07/146-IT-377-07. The first author gratefully acknowledges the hospi-
tality of the Brooks World Poverty Institute (BWPI) of the University of Manchester
where she was  visiting when the first version of this paper was  prepared.

∗ Corresponding author. Tel.: +34 946013688; fax: +34 946017028.
E-mail addresses: casilda.lassodelavega@ehu.es (C. Lasso de la Vega),

oihana.aristondo@ehu.es (O. Aristondo).
1 Tel.: +34 943033063; fax: +34 943033110.

variation, respectively, both depending on the distribution bounds,
which measure achievement and shortfall inequality identically.
The square of the latter is decomposable in the sense that the over-
all inequality can be expressed as a weighted sum of the inequality
levels computed for population subgroups plus inequality arising
from the differences among subgroup means. In turn, Lambert and
Zheng (2011) introduce a weaker property to measure achievement
and shortfall inequality consistently, and show that all relative and
intermediate standard inequality indices fail their requirement.
They also identify two classes of absolute inequality indices accord-
ing to which the measure of achievement and shortfall inequality is
identical, and show that, among them only the variance is subgroup
decomposable.

All these results rightly consider that achievements and short-
falls are different sides of the same coin and, consequently,
inequality of shortfalls and inequality of achievements should mir-
ror each other. Our starting point is slightly different. In fact,
this paper proposes considering a unified framework where the
achievement and the shortfall distributions can be jointly analyzed.
One simple way to do this, given any inequality measure, is to
aggregate the respective achievement and shortfall inequality lev-
els in a single indicator. Section 3 shows that taking a generalized
mean of these two  values allows us to transform any inequality
measure into an indicator which is able to capture the achieve-
ment and the shortfall inequality consistently. In addition, some

0167-6296/$ – see front matter ©  2012 Elsevier B.V. All rights reserved.
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of the properties enjoyed by the original index are inherited by its
transformation. Accordingly, measures both ratio-scale and trans-
lation invariant, may  be obtained and a decomposable index is also
identified.

When a standard inequality index is used to measure shortfall
inequality, the results depend on the bounds of the distribution. The
same happens if the indicators we suggest are applied. Most times
these levels are fixed values, for instance, if attainment is measured
by a variable in percentage terms. However, it may  be the case that
the bounds change. Then the procedure proposed will introduce a
source of arbitrariness in the measurement since inequality order-
ings may  change when the bounds vary. Hence, Section 4 is devoted
to obtaining inequality indicators that are bound-consistent, that
is, they lead to the same orderings regardless of the bounds. A
family of decomposable indices which gauges shortfall inequality
bound-consistently is characterized. We  also identify indices for
which the geometric mean aggregator rankings are independent
of the bounds. Finally we show that, in a decomposable setting,
only absolute measures can be aggregated through the arithmetic
mean indicator so that the inequality orderings remain unchanged
when the bounds vary.

2. Notation and basic definitions

We  consider a population consisting of n ≥ 2 individuals.
An achievement distribution is represented by a vector x =
(x1, x2, . . . , xn) ∈ Dn, with Dn = R

n+ or Dn = R
n++, where xi repre-

sents individual i’s achievement. We  assume that the variables are
ratio-scale and are lower bounded by 0. The set of all feasible dis-
tributions is D =

⋃
n≥2Dn. The positive part will be denoted by D+.

For any x ∈ D, �x = �(x) and nx = n(x) stand, respectively, for the
mean and population size of the distribution x.

For each  ̨ > 0 we let D˛ represent the set of distributions for
which  ̨ is an upper bound and denote as D˛+ = {x ∈ D+/xi < ˛}.
Note that if ˛′ > ˛, then D˛′ ⊃ D˛ and D can be decomposed as D =⋃

˛>0D
˛. The shortfall distribution associated with x ∈ D˛ is denoted

as s = (s1, s2, . . . , sn) ∈ R
n+, where si =  ̨ − xi represents individual

i’s shortfall. We  use the notation 1 = (1,  . . . , 1) and �1 = (�, . . . , �).
Hence the shortfall distribution can be equivalently denoted by s =
˛1 − x.

Given two  distributions x, x′ ∈ D, we say that x′ is obtained
from x by a progressive transfer if there exist two  individuals
i, j ∈ {1, . . . , n} and h > 0 such that x′

i
= xi + h ≤ xj − h = x′

j
and y′

k
=

yk for every k /= i, j.
An inequality index I is a real valued continuous function I : D →

R  which fulfils the following properties.
Pigou-Dalton Transfer Principle (TP). I(x′) < I(x) whenever x′ is

obtained from x by a progressive transfer.
Normalization (NOR).  I(�1) = 0 for all � > 0.
Symmetry (SYM).  I(x) = I(x′) whenever x = ˘x′ for some per-

mutation matrix �.
Replication Invariance (RI). I(x) = I(x′) whenever x′ =

(x, x, . . . , x) with nx′ = mnx for some positive integer m.
The crucial axiom in inequality measurement is the Pigou-Dalton

transfer principle which requires that a transfer from a richer per-
son to a poorer one decreases inequality. In addition, the indices are
usually assumed to be normalized with the inequality level equal to
0 when everybody has exactly the same distribution value. Symme-
try establishes that the inequality index should be insensitive to a
reordering of the individuals. Finally, replication invariance allows
populations of different sizes to be compared. These four properties
are considered to be inherent to the concept of inequality and have
come to be accepted as basic properties for an inequality index.

An inequality index IR : D+ → R  is relative if proportional
changes in all the values do not alter the inequality level, that is,
for all x ∈ D+ I(�x) = I(x) where � > 0.

A relative index is insensitive to variations in the unit in which
the variables are measured.

An inequality index IA : D → R  is absolute if the same increase
in all the distribution values does not change the inequality level,
that is, for all x ∈ D I(x + �1) = I(x) for all � whenever x + �1 ∈ D.

Given an inequality measure I and  ̨ > 0, IS(.; ˛) stands for the
shortfall indicator defined as IS(x; ˛) = I(˛1 − x) for any x ∈ D˛.

3. Proposing perfect complementary indicators.

3.1. The r-indicators associated with an inequality measure.

This paper deals with the problem of evaluating and compar-
ing the inequality level of bounded distributions. In these cases,
a person’s characteristics can be represented in terms of achieve-
ments or in terms of shortfalls. Consequently, the inequality level
can be assessed focusing on either of these terms. These two frame-
works are linked but nevertheless distinct, and can yield different
results. As mentioned above, recent efforts have been made to
introduce conditions and to define indicators for which the respec-
tive inequality levels mirror each other.

This paper aims to propose a mixed approach in which achieve-
ments and shortfalls may  be jointly analyzed. We  may  think of the
inequality of a bounded distribution as an aggregate of the inequal-
ity of achievements and the inequality of shortfalls. The properties
enjoyed by the r-order means make them an appropriate way  of
aggregation in several economic fields. As will be showed, also in
this framework they behave in a satisfactory way.

Consider an inequality measure I, a maximum level of achieve-
ments ˛, and, for a given distribution x ∈ D˛, the inequality values
I(x) and I(˛1 − x). If we  are interested in analysing simultane-
ously the achievement and the shortfall inequality, we may think
of aggregating these two  values. A natural aggregation procedure
may  be any r-order mean of them. The indicator defined in such a
way depends on the distribution x and on bound ˛.

Specifically, given  ̨ > 0 we propose to consider the r-indicator
associated with I, denoted by Ir that, for each distribution x ∈ D˛,
takes the following value

Ir(x; ˛) =

⎧⎪⎨⎪⎩
(

I(x)r + I(˛1 − x)r

2

)1/r

if r /= 0

(I(x)I(˛1 − x))1/2 if r = 0

When r < 0, the r-order means are defined only for positive values.
However, as I(x) = 0 implies, by normalization, that x = k1, we will
take the convention that whenever I(x) = I(˛1 − x) = 0, Ir(x; ˛) = 0
for any r < 0.

Now some properties of the r-order means are mentioned. For
any r, Ir(x; ˛) lies between I(x) and I(˛1 − x). Particular members
of this family are I1(x; ˛), which corresponds to the arithmetic
mean of the two values and I0(x; ˛), the geometric mean. The
mapping r → Ir(x; ˛) is a non decreasing continuous function on
all of R. The limiting case at one extreme is as r → −∞, giving
Ir(x; ˛) → min{I(x), I(˛1 − x)}. At the other extreme, as Ir , giving
Ir(x; ˛) → max{I(x), I(˛1 − x)}. Moreover, for a given r, Ir(x; ˛) is
non-decreasing in I(x) and in I(˛1 − x).2

In what follows we  show that some additional properties ful-
filled by I are inherited by the r-indicators.

2 See for example Steele (2004).
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Proposition 1. For any  ̨ > 0 the r-indicator Ir(.; ˛) associated
with an inequality measure I satisfies continuity, TP, NOR, SYM and
RI for any r. It also holds that for any x ∈ D˛, Ir(x; ˛) = Ir(˛1 − x; ˛).
In addition:

(i) If IR is relative, for any x ∈ D˛ Ir
R(x; ˛) = Ir

R(�x; �˛)  for all � > 0.
(ii) If IA is absolute, for any x ∈ D˛ Ir

A(x; ˛) = Ir
A(x + �1;  ̨ + �) for all

� > 0.

Proof. It is clear that Ir(.; ˛) satisfies continuity, NOR, SYM and
RI as I does. To prove that Ir(.; ˛) also fulfils TP, let us assume
that x′ is derived from x by a progressive transfer. Then, s′ =
˛1 − x′ is also derived from s = ˛1 − x by a progressive transfer. In
fact, a progressive transfer among two individuals’ achievements
leads to an increment in the richer person’s shortfall, whereas
the poorer person’s shortfall decreases. Since the richer person’s
shortfall is smaller than the poorer one’s, a progressive transfer of
achievements is equivalent to a progressive transfer of shortfalls.
Consequently, under a progressive transfer both I(x) and I(˛1 − x)
are bound to decrease and so does Ir(.; ˛). Finally, from the defini-
tions, it is clear that Ir(.; ˛) = Ir(˛1 − x; ˛) and that statements (i)
and (ii) hold. �

Ir is not a standard inequality measure since it depends on ˛.
Nevertheless, it fulfils all the properties that are usually assumed
for an inequality index, mainly TP. So it is able to capture the dis-
tribution inequality.

Because Ir(x; ˛) = Ir(˛1 − x; ˛), Proposition 1 opens up a wide
range of possibilities to derive perfect complementary indices, both
rank-dependent and rank-independent. Firstly, if I is a perfect com-
plementary indicator, i.e. I(x) = I(˛1 − x), then Ir(x; ˛) = I(x).

The invariance conditions fulfilled by Ir depend on the condi-
tions satisfied by I. Specifically all the relative measures such as
the Gini-coefficient, the S-Gini family (Donaldson and Weymark,
1980), the coefficient of variation, the Generalized Entropy family
(Shorrocks, 1980) or the Atkinson family (Atkinson, 1970) gener-
ate r-indicators that are insensitive to changes in the measurement
unit, and so unit-free.

For instance, the family of r-indicators associated with the Gini
coefficient, taking into account that G(˛1 − x) = (�x/  ̨ − �x)G(x),
is as follows

Gr(x; ˛) =

⎧⎪⎪⎨⎪⎪⎩
G(x)

(
�r

x + (  ̨ − �x)r

2(˛ − �x)r

)1/r

if r /= 0

G(x)
(

�x

˛ − �x

)1/2
if r = 0

Similar expressions hold for the coefficient of variation. As CV(˛1 −
x) = (�x/  ̨ − �x)CV(x), then

CVr(x; ˛) =

⎧⎪⎪⎨⎪⎪⎩
CV(x)

(
�r

x + (  ̨ − �x)r

2(˛  − �x)r

)1/r

if r /= 0

CV(x)
(

�x

 ̨ − �x

)1/2
if r = 0

Moreover, it may  be interesting to note that the r-indicators associ-
ated with a relative measure show a different behaviour when the
values of the distribution decrease proportionally, depending on
whether r > 0 or r ≤ 0. For a given ˛ > 0, consider an ˛-bounded
distribution x, � ∈ (0,  1] and the distribution x′ = �x, where every-
one’s achievement decreases gradually. In the end, when � is almost
0, the achievement and the shortfall distributions are almost egal-
itarian. One could expect that the indicator level be equal to 0.
Nevertheless this will not be always the case. Since IR is a relative

measure IR(�x) = IR(x). Then

Ir
R(�x) =

(
IR(�x)r + IR(˛1 − �x)r

2

)1/r

=
(

IR(x)r + IR(˛1 − �x)r

2

)1/r

As � → 0, when r > 0, Ir
R(�x) → IR(x)/21/r , whereas when r ≤ 0

Ir
R(�x) → 0.3

The r-indicators associated with absolute measures are also
worth computing. One interesting feature of these indicators that
will be used in the ensuing section is that Ir

A(x; ˛) = Ir
A(x; ˛′) for any

˛, ˛′ upper bounds of the distribution. In other words, the value of
the inequality does not depend on the upper-bound chosen.

3.2. Sensitivity conditions

Transfer sensitivity conditions (Kolm, 1976; Shorrocks and
Foster, 1987) demand that the inequality measure be more sen-
sitive to transfers lower down the distribution. Lambert and Zheng
(2011) establishes that no consistent inequality measure exists that
satisfies the transfer sensitivity axiom. The same simple example
they introduce to prove this result may  be used in our setting. Hence
no r-indicator associated with any inequality measure fulfils the
transfer sensitive axiom.

3.3. Decomposability

In many applied analyses, the population is split into groups
according to social characteristics as region, race, gender, and so
on. In these cases it is quite useful to invoke properties which allow
the inequality in each group to be related to overall inequality. An
often used requirement proposed by Shorrocks (1980) is to demand
that the overall inequality may  be decomposed as the sum of the
between- and the within-group components. The between-group
component is defined as the inequality level of a hypothetical dis-
tribution in which each person’s distribution values are replaced
by the mean of their subgroup. The within-group component is a
weighted sum of the subgroup inequality levels.

If this axiom is fulfilled, it is possible not only to identify sub-
groups where inequality is particularly high, but also to evaluate
their contribution to overall inequality. Thus it is quite useful in
applied analysis since it allows policy makers to target these groups
in order to achieve a maximum reduction in inequality levels.

To formalize this decomposition assumption, suppose that a
population of n individuals is split into J ≥ 2 mutually exclusive
subgroups with distribution xj = (xj

1, . . . , xj
nj

), where �j = �(xj)

denotes the mean of the jth subgroup and nj = n(xj) represents
its size for all j = 1, . . . , n. Let inequality in group j be written
Ij = I(xj). Let us denote by xB = (�11n1 , . . . , �J1nJ ) the distribu-
tion in which each person’s distribution value is replaced by their
subgroup mean.

Decomposability.  An index I is decomposable if the following rela-
tionship holds

I(x1, . . . , x1) = I(xW ) + I(xB) =
J∑

j=1

wj(�1, . . . , �J; n1, . . . , nJ)I(xj)

+ I(xB)

3 We are very grateful to one of the referees for having raised this point, closely
related to the drawback of the concentration index proposed by Wagstaff (2005) and
modified by Erreygers (2009a). See also Wagstaff (2009) and Erreygers (2009b).
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where wj(�1, . . . , �J; n1, . . . , nJ) ≥ 0 is the weight on subgroup j’s
inequality level Ij = I(xj) in the within-group term j = 1, . . . , J.

One implication of this property is the subgroup consistency
property (Shorrocks, 1984) which requires that if inequality in
one group increases, overall inequality should also increase.
Both Erreygers and Lambert–Zheng seek decomposable consis-
tent indices in their respective frameworks. Whereas the Gini-type
index characterized by the former is not decomposable, the square
of the second satisfies decomposability. In turn, Lambert–Zheng
shows that the only consistent inequality index which is decom-
posable is the variance. These results fit the standard inequality
field.

Now consider the first Theil measure (Theil, 1967), belong-
ing to the Generalized Entropy family, defined by T(x) =∑

1≤i≤nlog(�/xi)/n for any x ∈ D+. The arithmetic mean indicator

associated with T is defined as4

T1(x; ˛) =
∑

1≤i≤n
log
(�x�(˛−x)

xi(  ̨ − xi)

)
/2n for any x ∈ D˛

+.

The following proposition shows that T1 is decomposable.5

Proposition 2. The arithmetic mean index associated with the
first Theil measure, T1, is a decomposable measure for which the
following decomposition holds

T1(x1, . . . , xJ; ˛) = T1(xW ; ˛) + T1(xB; ˛) =
J∑

j=1

nj

n
T1

j (xj; ˛)

+ T1(xB; ˛)

Proof.

T1(x1, . . . , x1; ˛) = T(x1, . . . , x1) + T(s1, . . . , s1)
2

by definition

= 1
2

(
J∑

j=1

nj

n
Tj(xj) + T(xB) +

J∑
j=1

nj

n
Tj(sj) + T(sB)

)
since T is discomposable

= 1
2

(
J∑

j=1

nj

n
(Tj(xj) + Tj(sj)) + T(xB) + T(sB)

)
operating

=  T1(xW ; ˛) + T1(xB; ˛) by definition

Since the weights in the within-group component depend only on
the subgroup population shares, this decomposition also satisfies
the path independent property proposed by Foster and Shneyerov
(2000).  Contrary to what happens to most of the decomposi-
tions, the variations in between-group inequality as measured by
this index do not affect the within-group term. In addition, this
decomposition allows the policy makers to easily compute the con-
tribution of each group inequality to the overall inequality.

Remark 1. In the next section, it will be useful to have com-
puted the weights of the within-group term in a particular case.
Let be x ∈ D, with �x = �(x), nx = n(x). Let us consider the distribu-
tion z = (x, x). For any inequality measure I, replication invariance
implies that I(z) = I(x). In addition, if I is decomposable, then I(z) =
2wx(�x, �x; nx, nx)I(x). Hence, for any distribution x ∈ D and for
any decomposable measure I, wx(�x, �x; nx, nx) = 0.5.

4 It should be noted that since x ∈ D˛
+ , then both x and s take positive values, as

required to the logarithm function may  be computed.
5 All the Generalized Entropy measures are decomposable (Shorrocks, 1980). The

decomposition of the first Theil measure is expressed as follows: T(y1, . . . , yJ ) =
T(yW ) + T(yB) =

∑
1≤j≤J

(nj/n)Tj + T(yB).

4. The robustness of the inequality rankings to changes in
the upper-bounds

The family of r-indicators introduced in the previous section
depends on the ˛-parameter, which represents the upper-bound
of the distribution. And so does any standard inequality index used
to assess the shortfall inequality.

When the achievements are measured in percentage terms, the
upper-bound is fixed and  ̨ can no longer be considered as a param-
eter. However, sometimes the maximal value from which shortfall
is calculated may  vary between individuals, or between countries
or in different periods of time. A variation in the upper-bound will
change the shortfall distributions and then the inequality rankings
may  be reversed.

Consider for instance the women  and the men in a country.
Assume that the country’s potential permits  ̨ and ˛′ to be the
respective maximal achievements. Imagine that we are now inter-
ested in analysing these two groups as part of a bigger region in
which the maximal achievements are higher. It seems natural to
think that the inequality rankings are not reversed when we com-
pare the two  groups as part of the country or as part of the region.

This section examines under which conditions the shortfall indi-
cators and the r-indicators, which will be denoted indistinctly by
IG , guarantee that the rankings are not reversed when the bounds
change. This bound-consistency property is formally defined as
follows.

Definition 1. The indicator IG is bound-consistent if for any ˛, ˛′ > 0
and for any two distributions x ∈ D˛ and y ∈ D˛′

if IG(x; ˛) ≤ IG(y; ˛′) then IG(x;  ̨ + �) ≤ IG(y; ˛′ + �) for any � >
0.

It is clear that as long as absolute indices are involved in the
IG indicator, increments in the bounds do not alter the inequality
values. Notice that the definition requires the two  maximal levels, ˛
and ˛′, to be increased by the same absolute amount. An alternative
formulation would demand a proportional increment of the bounds
rather than an absolute one. This possibility is more restrictive and
it can be proved that it implies that only absolute measures fulfil
the requirement.

The next three propositions determine some restrictive circum-
stances which guarantee that the shortfall indicator, the arithmetic
mean and the geometric mean indicators are bound-consistent. A
sketch of the proofs is presented in Appendix A.

Proposition 3 below identifies a family of inequality measures
including the absolute indices that implies bound-consistency for
the shortfall and the geometric mean indicators.

Proposition 3. Consider an inequality measure I of the form I(x) =
e��(x)IA(x) with � ∈ R  and IA an absolute measure.

Then the shortfall indicator IS and the geometric mean indicator
I0 associated with I are bound-consistent.

The following two  results rely heavily on the class of decompos-
able absolute measures given by6

Iˇ(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

n(x)

n(x)∑
i=1

{eˇ(xi−�(x)) − 1} if  ̌ /= 0

1
n(x)

n(x)∑
i=1

(xi − �(x))2 if  ̌ = 0

6 This class has been characterized by Bosmans and Cowell (2010) in a continu-
ous  framework, and by Chakravarty and Tyagarupananda (1998) in a differentiable
setting.



Author's personal copy

582 C. Lasso de la Vega, O. Aristondo / Journal of Health Economics 31 (2012) 578– 583

As well known, the absolute family proposed by Kolm (1976)
arises for  ̌ /= 0 and the variance when  ̌ = 0. The arithmetic
mean indicator associated with the Kolm indices may  be easily
computed as

I1
ˇ(x; ˛) = 1

n(x)

n(x)∑
i=1

{eˇ(xi−�(x)) + eˇ(�(x)−xi) − 2} with  ̌ /= 0

Proposition 4 below identifies the decomposable indices that mea-
sure the shortfall inequality bound-consistently.

Proposition 4. The shortfall indicator IS associated with a decom-
posable inequality measure I is bound-consistent if and only if I is
a positive multiple of the form

Iˇ�(x) = e��(x)Iˇ(x) where ˇ, � ∈ R.

The class of inequality measures derived in this proposition is a
two-parameter family that contains all the decomposable absolute
inequality measures for � = 0. It is easy to prove that no relative
measure belongs to the family. In fact, the only unit-consistent
index in this class is the variance.7

The following Proposition 5 establishes that in a decomposable
framework the arithmetic-indicator is bound-consistent only when
it is associated with absolute measures.

Proposition 5. The arithmetic mean indicator I1 associated with a
decomposable inequality measure I is bound-consistent if and only
if I is a positive multiple of a decomposable absolute measure, that
is, I(x) = Iˇ(x).

5. Conclusions

This note introduces a procedure to derive indicators that
capture simultaneously the achievement and the shortfall inequal-
ity. The method proposes aggregating the two inequality levels
through any r-order mean. It is shown that this new indicator
inherits most of the properties enjoyed by the original index. Its
dependence on the maximal level of achievements makes this indi-
cator less than a standard inequality index. Seeking indicators for
which this dependence does not affect the inequality rankings, a
family of measures is identified for which the shortfall inequality
rankings do not depend on the upper bounds. In addition it is shown
that, in a decomposable framework, only absolute measures are
independent of the maximal level of achievements if the arithmetic
mean indicator is chosen to rank bounded distributions.

At the outset we have assumed that the characteristics are mea-
sured by ratio-scale variables. However the procedure proposed
may  also be applied when bounded cardinal variables are involved
in the analysis. The main difference is that now the lower bound
is likely to be different from zero, and it plays a role in computing
the shortfalls. Thus the aggregate of the achievement and shortfall
inequalities depends on an additional parameter. It is easy to check
that the modified versions of Proposition 1 and Proposition 2 hold
in this framework.

Since relatively few consistent indicators exist in the literature
related to this field, and inequality measurement depends deeply
on the indicator chosen, we hope that this note may  contribute to
the robustness of the results obtained in empirical applications.

7 According to Zheng (2005, 2007) the unit-consistency property requires that
the  inequality orderings are not reverse when the units in which the variable is
measured change.

Appendix A.

Proof of Proposition 3. It is clear from the definitions.
Proof of Proposition 4. Before proving this proposition theorem,

the following lemma  needs to be established:

Lemma  1. The indicator IS associated with a decomposable
inequality measure I is bound-consistent if and only if

I(x + �1) = e��I(x) for any � (1)

Proof. The sufficiency of the lemma is obvious. For the neces-
sity, following the proof of Proposition 1 in Zheng (2007),  we  may
conclude that bound-consistency for IS implies that there exists a
continuous function, increasing in the last argument, such that

I((  ̨ + �)1 − x) = f (�, I(˛1 − x)) (2)

Following the proof of Proposition 3 in Zheng (2005) and taking
into account Remark 1, it can be shown that Eq. (2) can be written
as

I((  ̨ + �)1 − x) = f (�, I(˛1 − x)) = a(�)I(˛1 − x) (3)

for all  ̨ > 0, x ∈ D˛, � ∈ R+ and some positive function a(.).
The proof is completed noting that, for any two factors �, ı ∈ R+,

and from Eq. (3),  we  have

I((  ̨ + (� + ı))1 − x) = a(� + ı)I(˛1 − x)

equivalently I((  ̨ + (� + ı))1 − x) = a(ı)I((  ̨ + �)1 − x) =
a(�)a(ı)I(˛1 − x)

therefore a(� + ı) = a(�)a(ı) (4)

The solution to this standard Eq. (4),  following Aczél (1966, p. 38),
is a(�) = e�� for some constant �.

Proof of Proposition 4. Zheng (2005) based on Shorrocks (1984)
shows that any continuous decomposable inequality index takes
the form

I(x) = 1
n(x)�(�(x))

n(x)∑
i=1

(�(xi) − �(�(x)))

where �(.) is continuous and strictly convex; and �(.) is a continu-
ous function.

Lemma  1 above has shown that I must satisfy I(x + �1) = e��I(x).
Define J(x) = e−��(x)I(x). It is easy to see that J(x) is also decompos-
able and an absolute inequality measure. As such, Bosmans and
Cowell (2010) (see also Chakravarty and Tyagarupananda (1998))
can be applied obtaining that J(x) is a positive multiple of the
following measures: I(x) = (1/n(x))

∑n(x)
i=1 {e˛(xi−�(x)) − 1} or I(x) =

(1/n(x))
∑n(x)

i=1 (xi − �(x))2. This proves the necessity of the propo-
sition. The sufficiency of the theorem is obvious.

Proof of Proposition 5. Proposition 5 follows from Lemma  2
below.

Lemma  2. The indicator I1 associated with a decomposable
inequality measure I is bound-consistent if and only if I is a decom-
posable inequality measure that satisfies

I(x) + I((  ̨ + �)1 − x) = e��(I(x) + I(˛1 − x)) (5)

for all  ̨ > 0, x ∈ D˛, � ∈ R++ and some constant �.

Proof. The sufficiency of the lemma  is clear. As regards the neces-
sity we follow the proofs of Proposition 1 in Zheng (2007) and of
Proposition 3 in Zheng (2005) taking into account remark 1 regard-
ing the weights in the within-group term. If I1 is bound-consistent,
then there exists a continuous function, increasing in the last argu-
ment, such that
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I(x) + I((  ̨ + �)1 − x) = f (�, I(x) + I(˛1 − x)) (6)

As in the proof of Proposition 3 in Zheng (2005) it can be shown
that

I(x) + I((  ̨ + �)1 − x) = f (�, I(x) + I(˛1 − x))

= a(�)(I(x) + I(˛1 − x)) (7)

for all x ∈ D, � ∈ R+ and some positive function a(.).
Similarly to the proof of Lemma  1 it can be obtained that a(�) =

e�� for some constant �.
Proof of Proposition 5. We  are to prove that only absolute mea-

sures fulfil equation (5).  Indeed, Eq. (5) may  be rewritten as

I((  ̨ + �)1 − x) = (e�� − 1)I(x) + e��I(˛1 − x) (8)

Given ε > 0, we will show that I(x + ε1) = I(x). Let be  ̌ =  ̨ + ε,
and consider the distribution

z = ε1 + x = (  ̌ − ˛)1 + x (9)

From Eq. (8) we get

I((  ̌ + �)1 − z) = (e�� − 1)I(z) + e��I(ˇ1 − z)

Since from (9),  ˇ1 − z = ˛1 − x, then I(ˇ1 − z) = I(˛1 − x) and
I((  ̌ + �)1 − z) = I((  ̨ + �)1 − x). Applying (8) the following also
holds:

(e�� − 1)I(x) = (e�� − 1)I(z)

Consequently, � = 0 or I(x) = I(z). Substituting this in (8) we find
that, in both cases, I is an absolute measure.
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